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Abstract

The accurate determination of three-dimensional crystal habit (long–intermediate–short axis) is a requirement to enable correct
stereological conversion of 2D crystal size measurements to true 3D crystal size distributions (CSDs). In this contribution, we
introduce a database and spreadsheet program which provides an objective estimate of true crystal habit from raw 2D
measurements. The database compares the sample's 2D measurements with 2D shape curves for random sections through 703
different habits. The output gives the five best-match curves and corresponding crystal habits based on a least-squares fit between
sample and database. The minimum sample size required to give good shape estimates from 2D data is tested using random runs of
sections through known shapes with different population densities. At minimum, 75 crystal sections are required to robustly
determine crystal habit for CSD measurements if crystals are tabular in shape, with more acicular shapes requiring a minimum of
250 sections, suggesting a sample size of N250 sections to be used for shape determination in natural examples where the true 3D
shape is unknown. The crystal habit of the best-match shape can then be used to provide a more robust CSD analysis, which in turn
can be used to investigate magmatic processes with more certainty.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Crystal populations provide a vital window into
magmatic processes. Crystal size distributions (CSDs)
of volcanic rocks, for example, depend on the cooling
and crystallisation history of the magmatic system and
provide valuable information about magma residence,
mixing events, and magma chamber dynamics (Marsh,
1988, 1998; Jerram et al., 2003). Accurate quantification
of crystal populations, however, is a non-trivial process.
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In most cases the crystal population, which is a three-
dimensional (3D) entity, can only be viewed in two-
dimensional (2D) thin sections or on polished slabs due
to the indurated nature of the rock. In such cases, the 2D
representation of the crystal population must be
corrected stereologically to provide a true 3D popula-
tion. The 3D population can then be used to investigate
the magmatic processes which shaped its formation.

Correction from 2D ‘apparent’ crystal sizes to true
3D crystal populations has been made more straight-
forward in recent years by the ‘CSDcorrections’ soft-
ware (Higgins, 2000) created for this purpose. This
program requires the 2D length measurements of the
sampled crystals and, given information on crystal habit,
crystal roundness and sample foliation, performs a
stereological correction of this 2D data array providing a
corrected 3D CSD. Thus, an accurate estimate of the 3D
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crystal habit is a key element of this correction pro-
cedure. This contribution describes a database of dis-
crete crystal shapes and generating software which can
be used to give an objective estimate of the 3D habit of
crystals from normal 2D short axis/long axis measure-
ments of non-foliated samples, defined by a least-
squares fit of an ellipse. The database is contained in an
easy-to-use spread sheet (written for Microsoft®
Excel®) which compares raw data with information
concerning known sections and outputs the five best-
matching crystal shapes for the input crystal population.
Guidelines are also given for the minimum sample sizes
required to get accurate crystal habits from 2D sections.
These shape estimates can then be used in CSDcorrec-
tions to convert the 2D CSD to a true 3D distribution,
providing a simple and objective way towards a more
robust CSD measurement.

2. The crystal shape database

Estimating true 3D crystal habit from 2D sections was
investigated by Higgins (1994) who showed that certain
‘apparent’ distributions of short axis/long axis measure-
ments can be recognised from random sections through
known 3D shapes. Fig. 1 shows random 2D sections
through known 3D shapes and statistics on 2D shape
(short axis/long axis) examples from this study but
directly comparable to Higgins (1994). For the purposes
of this paper, 25 bins are used in the 2D shape curves.
This is a compromise between having enough points to
define the curve well, which requires more bins, and
Fig. 1. Random sections through known 3D shapes with population “shape
estimate 3D shape from 2D data (similar to Higgins, 1994).
having few enough bins such that a typical number of
data points from a sample (≥100) will give a relatively
smooth distribution.

3. Method

The sections shown in Fig. 1 are drawn from the
output of the program CSDcut2 which rotates the shape
of interest through a random angle around the x, y and z
axes sequentially, repeated ten times to remove effects
of preferential orientation and the effect of pseudo-
randomness in the random number generator routine.
The rotated shape is then sectioned perpendicular to the
z axis at a randomly determined level between ± l, the
length of the body diagonal. This does mean that there
is a chance the shape is not actually intersected by the
cut plane. If this occurs, the rotated shape is discarded
and the whole procedure is repeated (in effect, the thin
section has “missed” the crystal). Resulting data for
successful intersections are then compared with an el-
lipse of the same area, centred upon the centroid of area
of the intersected shape with the ellipse long and short
axes and ellipse orientation adjusted until the root-
mean-square (rms) residual mismatch is minimised. The
program can operate in one of two modes; in the first
mode, only the integrated database of binned long-axis
to short-axis ratio is output (50 bins) ready for modi-
fication and incorporation into the spreadsheet. In the
second mode, all of the calculated data are output,
including numbers and co-ordinates of vertices, polygon
area, perimeter, best-fit ellipse with major and minor axis
curves” of normalised frequency vs. short axis : long axis ratio used to
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lengths and ellipse orientation. This latter option is,
however, not recommended for large databases or runs
involving large numbers (N10,000) of sections per shape
both as the program is slightly slowed and the storage
requirements for the resulting files are high to prohib-
itive. The program does give warnings and a projected
estimate of required disk space, however.

In order to provide an objective basis for crystal habit
identification, this study uses a database of some 703
discrete crystal habits. If required, the CSDcut2 program
can be used to generate a new database. In this case a
batch file needs to be constructed; instructions and an
example accompany the program. When the new data-
base has been compiled (which can take some hours; the
current database requires over 7 million sectioning and
fitting routines to be carried out, for instance), the new
database can be pasted over the old one in Excel® or the
current database spreadsheet used as a template for a
new database.

Each crystal habit has been randomly sectioned
10,000 times to produce the representative 2D shape
curves. Greater numbers of sections were not used due to
the computation time required and also because 10,000
sections are already far greater than that in a typical
measured CSD. The resulting database contains the
characteristic 2D curve for each crystal shape in the
database, which can be compared with the data from the
sample. A spreadsheet called CSDslice incorporates the
Fig. 2. Screen shot of CSDsli
crystal shape database and through comparison with 703
crystal habits finds the closest-matching shape curve to
the 2D shape data based on a linear regression com-
paring the frequency of occurrence in the sample shape
curve and in the database shape curve data. The spread-
sheet outputs the five best-matching crystal habits with a
graphical representation of the raw data compared to the
best-matching characteristic shape curve (Fig. 2).

4. Implementation

Using such methods it is possible to estimate the 3D
crystal habit from 2D data given enough sections and
assuming the 3D habit of all the crystals in the 2D
section is the same. The various peaks on the short axis/
long axis plot relating to the long–short and long–
intermediate divisions allow the relative habit to be
known, where the shortest dimension is one. In real data,
however, the shape curves are not always clear-cut
which can lead to more subjective estimates of the
crystal habit and less robust CSD calculations. The
effect of changes in the short-axis to intermediate-axis
ratio and the intermediate-axis to long-axis ratio on the
calculated volume percentage of that crystal for a natural
dataset (best-matching habit 1 :2.8 :4) is investigated
using CSDcorrections and the results are shown in Fig. 3.
Fig. 3a shows that an increase in the intermediate axis
whilst keeping the same ratio between long and
ce database (version 4).



Fig. 3. Graphs showing effect of changes in (a) short axis : intermediate axis and (b) intermediate axis : long axis on the calculated volume percentage
of crystals and the regression of the CSD slope.
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intermediate axis (effectively a decrease in the short axis
length) has a strong effect of decreasing the calculated
crystal fraction. In addition, there is a small effect on the
slope of the linear regression to the CSD, although this
effect operates at the sub-percent level. In Fig. 3b, it can
be seen that increasing the length of the crystal whilst
holding the ratio of the short and intermediate axes
Fig. 4. Testing sample size and shape fit data with the shape 1 :1 :3. a) 50 secti
level of fit with sample size bounded by acicular and tabular shapes. Note tha
more widely variable due to the statistics of sectioning behaviour. Sample sets
requisitely high scores (R2N0.8).
constant (i.e. increasing acicularity) increases the cal-
culated crystal volume fraction. In addition, there is a
strong effect of shallowing the slope of the linear
regression to the CSD as crystal sizes are proportion-
ately increased. Therefore, the CSD is sensitive to the
relative lengths of all three axes of the crystal shape and
shape may therefore have effects on parameters such as
ons, b) 100 sections c) 300 sections. d) Envelope showing the improved
t tabular shapes home in quickly to high scores, but acicular shapes are
of 200–250 crystals routinely give very close agreements in shape with
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crystal residence times calculated from the slope of the
linear regression to the CSD.

5. Estimating the 3D crystal habit from 2D long and
short axis measurements

Minimum sample size is an important question when
calculating CSDs for natural populations of crystals
from 2D thin sections. Mock and Jerram (2005) pro-
vided a test of this using a 3D reconstruction of a true
CSD from a porphyritic rock. They used this to test the
effect of sample size on the CSD and found that a
sample size greater than 200 faithfully reproduced the
CSD. In the case of shape estimates from 2D data it is
Fig. 5. Example of CSDslice shape estimate for natural example STR46 from
crystal outlines; b) short axis : long axis ratios as binned and placed into CSD
R2=0.8835; c) Final CSD pattern as a screenshot from CSDcorrections v. 1.
populations, but with a reasonable crystal proportion (25.7%) compared to t
also important to know the minimum sample size that
will provide robust 3D shape estimates from 2D section
data. Here, we test this by comparing random sections
through known shapes with different population
densities, and use the database to estimate the shape.

As a test of the sample size required to estimate
crystal habit accurately, different, random selections of
2D measurements were taken from the crystal section
data produced along with the dataset for each of the
crystal habits: 1 :1 :3, 1 :2 :3, and 1 :10 :10, examples of
acicular, blocky and tabular crystals, respectively. The
reliability of a shape is quoted as R2, the fractional
measure of the variation in the sample explained by the
best-fit shape of the database.
Stromboli volcano, Italy; a) raw data for slide STR46 containing 1465
slice, together with the best-fit shape output by CSDslice of 1 :2.8 :4,
35 (Higgins, 2000 et seq.), showing kinked CSD derived from mixed
hat observed in the thin section.
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In practice, it is observed that R2 values of over 0.8
give generally close agreement with the actual crystal
shape, although care has to be taken when dealing with
sample sets which involve less than about 200 crystal
sections, as there are 25 bins in the fitting process, and at
this level the statistics make the fitting process very
susceptible to blips at high aspect ratios. Natural samples
tend to display broader distributions than the idealised
shapes of the database, being generally composed of either
a family of similar crystal habits or even two or more very
different crystal habits (Mock and Jerram, 2005).

Sequentially, populations of 10, 20, 50, 100, 200,
300, 500, and 1000 sections were fed into the CSDslice
spreadsheet for each of the three analysed crystal habits
1 :1 :3, 1 :2 :3, and 1 :10 :10, and R2 determined. Re-
sults for 50, 100 and 300 slices for the crystal habit
1 :1 :3 are shown in Fig. 4a–c, together with a plot of
how quickly R2 increases with the population size over
the three considered shapes (Fig. 4d). Note that for
acicular shapes, such as the crystal habit 1 :1 :3, R2

increases more slowly. This is due to the low probability
of sectioning the full length of an acicular shape and
obtaining the short-long axis section. Conversely, the
probability of sectioning tabular crystals in orientations
that will give true short/intermediate and short/long axis
sections is much higher, and so they produce a high R2

for small populations. This is clear from both the graph
in Fig. 4 and also the shapes of the curves of the
database populations, which are focused for tabular
populations and broadly scattered for acicular popula-
tions (see Fig. 1). This also leads to a higher level of
variability in the case of the acicular shapes due to low
probabilities of extreme sections, and therefore the need
to look at larger numbers of sections. The curve for cubic
populations is very similar to that for acicular popula-
tions due to the large proportion of triangular cuts, which
do not carry as much information useful for determining
shape as they sample only small portions of a shape's
volume. As acicular aspect ratios become increasingly
extreme, it becomes statistically harder to cut the longest
axis. Even the database itself, compiled from 10,000
sections, shows some difference between different runs
of the most extreme shape considered, 1 :1 :10.

As a test example, analysis is performed on a digitised
image of the plagioclase phenocrysts in a porphyritic
lava from Stromboli, Italy (Fig. 5a). The short axis/long
axis data from CSDslice suggests a crystal habit of
1 :2.8 :4, with R2 of 0.8835 (Fig. 5b). The resultant CSD
plot is shown in Fig. 5c using CSDcorrections version
1.35 to calculate the 3D CSD from the 2D data. Clearly,
the fit for natural data is less accurate than has been tested
in this study using exact shapes. This highlights the fact
that natural populations often exhibit non-unique shapes;
however, using an average estimate of shape markedly
improves the calculated CSD (Mock and Jerram, 2005).

Further tests using sample sets of representative size
(400 sections) but derived from mixtures of ideal shapes
from the database were undertaken to examine the effect
of mixed populations on the CSDslice spreadsheet. The
sheet was able to accurately determine the dominant shape
present in a mixed population (50%+ of the population)
for both acicular and lath shapes.

6. Closing remarks

A user friendly database ‘CSDslice’ is introduced
which allows the user to obtain objective estimates of
crystal habit (long–intermediate–short axis) to be used
when calculating 3D CSDs from 2D section data (e.g. for
use with CSDcorrections (Higgins, 2000)). The dataset
comprises 703 shapes with crystal habits in the range
1:10:10–1:1 :10–1:1 :1. When raw 2D data are placed
into CSDslice the database returns the best 5 shape fits
determined by linear regression automatically, with R2

values ranging from 0 to a maximum of 1, indicating
perfect fit. An R2 value of N0.8 for over 200 considered
crystal sections is recommended to give a good statistical
fit. Acicular and cubic shapes have R2 values of 0.4–0.6
when 200 2D crystal sections are considered, with close
determinations of the actual shapes attained only by 300
considered crystal sections, suggesting accurate determi-
nation between 200−300 (e.g. at ∼250 sections). Tabular
shapes require less crystal sections to be considered as the
longest dimension of the crystal is more frequently
sectioned. This value is in close agreement with the
findings of Mock and Jerram (2005) which suggested a
sample size greater than∼200 to accurately measure a 3D
CSD from 2D data.
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